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Achieving better understanding phosphorus (P) flows through urban ecosystems is needed to conserve P,
as non-renewable phosphate rock deposits become depleted and the global human population increases.
A baseline mass flow analysis (MFA) for P developed for the Twin Cities Watershed (TCW, which includes
most of the Minneapolis-St. Paul metropolitan region) showed that most P input was stored in the system
(65%) or leaked from it (31%); only 4% was deliberately exported as useful products. In a realistic, com-
prehensive conservation scenario P input was reduced by 15%; deliberate export of P in the form of sew-
age sludge, food waste, and landscape waste was 68% of P input. In this scenario, increased deliberate
export was accomplished by decreasing leakage (to 9% of input) and storage (to 23% of input). If used
as agricultural fertilizer, the deliberately exported P in the conservation scenario would support about
half of the food production required by the TCW.

� 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the 1970s, when evidence of the relationship between
phosphorus (P) and lake eutrophication became overwhelming
(Schindler, 2006), the main goal of phosphorus (P) management
in cities has been to control eutrophication. Eutrophication (nutri-
ent enrichment) increases algae abundance, thereby reducing clar-
ity, shifts the dominance of algae toward blue-greens, and depletes
hypolimnetic oxygen, causing release of reduced chemicals (H2S,
Mn2+, Fe2+). Impacts of eutrophication to human well being include
reduced recreational enjoyment, reduced property values of lake-
shore homes, increased cost of water treatment, and impaired
drinking water quality. Exported P also contributes to eutrophica-
tion of estuaries, particularly the creation of anoxic zones, which
impairs fisheries, often with considerable economic loss (SAB,
2007).

Policies to reduce P pollution from US cities have included ex-
panded use of advanced (‘‘tertiary’’) wastewater treatment systems
and bans on P-containing detergents in 28 states during the 1970s
and 1980s, eventually leading to a voluntary industry phase-out
(Litke, 1999). In recent years, some states and local governments
have also restricted the use of lawn P fertilizers and/or banned
the use of P-containing automatic dishwasher detergents (Rosen
and Horgan, 2005; USA Today, 2010). Farmers have also become
far more efficient it their use of P over the past several decades,
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Can urban P conservation hel
reducing their input of P fertilizer while increasing removal of crop
P (Bundy, 1998). The agricultural P balance for the Mississippi-
Atchafalaya River basin, which was positive most years from
1950–1990 (i.e., more P added to agricultural systems than re-
moved as products) became negative in the 1990s (i.e., the agricul-
tural system was mining P stored in soils) (SAB, 2007). As a result
of increased P use efficiency, agricultural P fertilizer use in the US
has declined by �15–20% since the mid-1970s (ERS, 2010).

Despite these efforts, an analysis of P trends in rivers in the US
for the period 1993–2004 (Sprague and Lorenz, 2009) revealed
more sites with upward trends (24%) than downward trends
(16%), with no change at 40% of the sites. P fluxes to the Gulf of
Mexico increased by 12% between 1980–1996 and 2001–2003
(SAB, 2007). Hence, it appears that P leakage from our cities and
farms continues.

While the motivation to reduce eutrophication is still pressing, a
newer and potentially more serious concern is the exhaustion of
phosphate rock (Herring and Fantel, 1993; Vaccari, 2009), the
source of most P fertilizer. If we do not adopt P conservation policies
over the next few decades, the green revolution made possible by
industrial fixation of nitrogen (Haber–Bosch process) in the early
20th century (Smil, 2001) could be followed by a ‘‘brown devolu-
tion’’ in the mid-to-late 21st century, as rising population and food
wealth (e.g., greater meat consumption) collide with diminishing P
resources, with devastating consequences for humanity.

Preventing the brown devolution will require us to use less P
and to use it more efficiently. This paper focuses on P conservation
in urban systems, which may house two-thirds of the world’s pop-
ulation by 2030 (FAO, 2001). Although direct P inputs to cities (at
p to prevent the brown devolution? Chemosphere (2011), doi:10.1016/
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least in the US) are small relative to agricultural inputs, consump-
tion of food in cities drives agricultural P fertilization. Moreover, in
the US at least, there is probably greater future opportunity to con-
serve P in cities than in agriculture, because P cycling in agricul-
tural systems has already been tightened over the past few
decades.

The few studies of urban P cycling that have been conducted
indicate that most P entering cities is stored (in landfills or soils)
or is exported via wastewater. Tangsubkul et al. (2005) found that
50% of P imported into Sydney, Australia, was stored within the
system and that most of the rest was exported as sewage effluent.
In a study of 266 counties in the Chesapeake Bay watershed, Russel
et al. (2008) found a strong correlation between Net Anthropogenic
Phosphorus Index (NAPI, the difference between imported P and
net exports of animal and crops) and human population, with NAPI
values of 40–80 kg P ha�1 yr�1 in the counties with densest urban
populations. Similarly, Schussler et al. (2007) found in a study of
11 Minnesota watersheds that while P inputs (kg ha�1 yr�1) were
higher in agricultural watersheds than in urbanized watersheds,
net P retention was highest in more urbanized watersheds, be-
cause there was little ‘‘deliberate export’’ of P in the form of agri-
cultural products.

This study examines P balances for the Twin Cites Watershed
(TCW), which includes most of the Minneapolis-St. Paul (Minnesota,
USA) metropolitan region. P balances include a baseline P balance
(for 2000), and three conservation scenarios (reduced input; re-
duced storage; and reduced leakage), followed by a comprehensive
conservation scenario that includes all three conservation
approaches. The comprehensive conservation scenario reduced P
input by 15%, reduced P storage by 71%, and reduced P leakage by
74%, while increasing deliberate P export by 1200%. The P supplied
by the comprehensive conservation scenario would be sufficient to
grow about half of the food needed by the TCW.
Fig. 1. Map of the Twin Cities Watershed (TCW), showing watershed boundaries, key ri

Please cite this article in press as: Baker, L.A. Can urban P conservation he
j.chemosphere.2011.03.026
2. Theory

Mass flow analysis (MFA), the process of tracking the move-
ment of pollutants through ecosystems, can be a valuable tool for
gaining insights regarding management of pollution in cities and
agricultural ecosystems. MFA has become an integral tool to indus-
try ecology, but is only now gaining ground as a technique to ana-
lyze sources and fates of pollutants in urban ecosystems (Baker,
2009). Early applications of MFA to cities include Boyd et al.
(1981) and Faerge et al. (2001). In the past decade, the approach
has been used with increasing frequency to not only describe ur-
ban systems, but to develop innovative solutions to pollution prob-
lems. Some examples include the construction of a detailed N
balance for Phoenix, Arizona, used to envision a novel approach
for reducing groundwater nitrate contamination (Baker et al.,
2001); an analysis of pathways of N and P in residential water sys-
tems (Gray and Becker, 2002), the development of salt balances for
five southwester water utilities to identify potential for reducing
salinity in recycled wastewater (Thompson et al., 2006); the use
of a urban-agricultural N balance to quantify the effect of urban
diet changes on coupled agricultural and urban systems (Baker
and Brezonik, 2007); and the development of salt balances for
the Twin Cities, Minnesota urban region to quantify accumulation
rates (Novotny et al., 2009). MFA has also been used to quantify C,
N, and P fluxes for large numbers of individual households (Baker
et al., 2007; Fissore et al., 2010).

3. Materials and methods

The system boundary for the TCW was the watershed bounding
most of the urbanized region (Fig. 1), bounded on the upstream by
the Mississippi River at Anoka, on the north, and the Minnesota
River at Jordan on the west, and on the downstream side by the
ver sampling sites, and Census blocks (roughly proportional to population density).

lp to prevent the brown devolution? Chemosphere (2011), doi:10.1016/
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Table 1
Characteristics of the TCW.

Characteristic Value

Population 2.1 million

Number of farm animals
Number of dogs 471,000
Number of cats 596,000
Number cows 2700
Number of hogs 5600
Area, km2 3011
Land use (%)

Residential 33
Agriculture 9
Water, undeveloped 30
Commercial, institutional, industrial 12
Transportation 4
Parks and golf 12
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Mississippi River at Hastings (Fig. 1). Key characteristics of the
TCW are shown in Table 1.

Methods the watershed P balance generally follow from meth-
ods used to develop a regional N balance for Phoenix, Arizona
(Baker et al., 2001) and, more generally, Baker (2009). Additional
documentation of methods to calculate P fluxes associated with
households (e.g., human and pet food; landscape wastes) can be
found in Baker et al. (2007) and Fissore et al. (2010). The latter pa-
per includes an extensive ‘‘supplemental methods’’ section.

The baseline MFA presented here represents the TCW in ‘‘ca.
2000’’ as nearly as possible. Export of stream P from the urban wa-
tershed is an estimate from long-term averages or ‘‘normal’’ condi-
tions computed by Kloiber (2006). GIS layers of land cover, land
use, and the regional sewershed were obtained from a regional
governmental organization, Met Council, and watershed popula-
tion was determined from US Census block level data. Population
served by septic systems was determined by subtracting the pop-
ulation within the sewershed from the total watershed population.
P moving to septic systems was considered to be ‘‘stored’’; P mov-
ing to municipal sanitary sewers was routed to wastewater treat-
ment plants (discussed below).

Human food consumption was calculated from national studies
of food consumption for the current period (USDA, 2005), multi-
plied by the age- and sex-stratified population for the watershed.
Scenarios involving reduced human food input were based on the
US diet in 1977–1978 (USDA, 1978). Pet food input to the system
was calculated using the approach outlined in Fissore et al.
(2010), using a national estimate of pet incidence (PFI, 2003) and
TCW population to derive the total number of dogs and cats (Table
1). Average weights of 30 kg for dogs and 5 kg for cats were as-
sumed. Because there is little food production within the TCW,
both human and pet foods were considered to be imported.

Lawn P fertilization was estimated from a state-wide assess-
ment of lawn fertilizer (MDA, 2007) by computing a per capita
lawn P fertilization rate for the state and scaling this to the TCW
population for the year 2003, before Minnesota enacted a lawn P
fertilizer restriction. Atmospheric P deposition (wet + dry for an
average year) was based on a study by (Barr, 2007) using the aver-
age of values for the Upper Mississippi River and the Lower Missis-
sippi River (0.35 kg ha�1 yr�1).

P loadings to sewage treatment plants were calculated as the
product of monthly P concentration times flow for influent sewage,
summed for the year 2000, and then summed across the seven me-
tro region sewage treatment plants, using data obtained from Met
Council. Discharge of effluent P was computed in a similar manner,
using data for the outflows from each plant. Average P removal was
56%. P removed from sewage was assumed to enter sludge. This
sludge is then ashed and transported to landfills, where it is buried.
Please cite this article in press as: Baker, L.A. Can urban P conservation hel
j.chemosphere.2011.03.026
All P in consumed human food was assumed to enter sewage.
The difference between P in human excretion and P input to the
sewage treatment plants (non-fecal P) includes garbage grinder
wastes, automatic dishwasher detergents, and dentrifices. Per capi-
ta inputs for these components were estimated by Barr (2007) and
Baker et al. (2007), refined slightly in Fissore et al. (2010).

The flux of P in solid waste sent to landfills, based on Beck
(1999), was considered P storage. In additional to untreated solid
waste, the City of Minneapolis incinerates its waste and landfills
the ash, so this was added to the ‘‘landfill’’ flux. Finally, about
30% of food waste is diverted before it enters landfills for animal
feed and other purposes (SWMCB, 2007). This flux was counted
as a separate export from the system. Most yard waste that leaves
private property is composted. The flux of yard waste to the com-
post system was estimated using a household level export rate of
0.1 kg P per household per year for single-family, detached homes
(Fissore et al., 2010), which comprise 72% of all households in the
Twin Cities region and have an average of 2.6 occupants ⁄(USHUD,
2007). A small fraction of yard wasted enters landfills (it is illegal
to dispose of yard waste in landfills, but some enters anyway),
but most of the rest is composted. Because there are many compost
sites, operated by multiple entities (individual municipalities,
counties, and private contractors), it was difficult to estimate the
fate of compost. For the City of St. Paul, 95% of compost is exported
to agricultural land outside the metropolitan region; hence this va-
lue was used to represent the export fraction for compost.

P fluxes throughout agricultural land in the watershed were cal-
culated by assuming that agriculture within the TC watershed was
similar as agricultural land in the larger 7-county metro region,
hence fluxes could be scaled down from county-level data (number
of farm animals, acreage of crops, fertilization rates for each crop,
etc.) to estimate the distribution of crops and farm animals (NASS,
2002; MDA, 2003) in the TC watershed. P use efficiency for farm
animals (mainly dairy cows and hogs) were based on a whole
‘‘whole herd’’ approach developed by (Schussler et al., 2007),
yielding values of 35% of dairy cows and 50% for hogs. Animals
and animal products (mostly milk, beef, and hogs) were assumed
to be exported from the TCW for processing. All manure P was
considered to be recycled to crops. The net direction of crop P flux
was determined by comparing the feed requirement of farm
animals with crop production in the watershed, both in terms of
P. If crop P exceeded animal feed needs, the excess crop P was
exported from the watershed. If crop P was less than needed for
farm animals, the deficit was supplied by imported animal feed
(e.g., grains).
4. Results

4.1. Baseline (2000) TCW P balance

4.1.1. P inputs
Table 2 shows that the major P inputs to the TCW are imported

human food, both food that is directly consumed (1.16 Gg P yr�1)
and food that is imported but wasted (0.51 Gg yr�1). Together,
these account for 41% of total P inputs to system. Calculated food
waste (31% of total food input) agrees well with Kantor et al.
(1997), who found that 27% the edible food supply in the US is
wasted.

The next largest P input was P-containing chemicals that enter
sewage, other than human excretion and garbage disposal waste.
A study by (Barr, 2007) reported that these include dentrifices
(0.012 kg cap�1 yr�1) and automatic dishwasher detergents
(0.125 kg P capita�1 yr�1, with 68% coming from residences and
the rest from commercial dishwashing), anticorrosion agents added
to water supply, and other commercial and industrial sources.
p to prevent the brown devolution? Chemosphere (2011), doi:10.1016/
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Table 3
Calculated P fluxes for conservation scenarios I–IV. Units are Gg yr�1.

– Input Storage Deliberate export Leakage

Baseline 4.07 2.64 0.18 1.25
I. Reduced input 3.44 2.1 0.20 1.14
II. Reduced storage 4.07 0.90 1.92 1.25
III. Reduced leakage 4.07 3.52 0.18 0.37
IV. Comprehensive, I–III 3.44 0.78 2.34 0.32

Table 2
Current P balance for the TCW.

Inputs P flux (Gg yr�1) % of total

Human food consumed 1.16 28.5
P-containing chemicals that enter sewage 1.37 33.7
Wasted human food 0.51 12.5
Pet food 0.55 13.5
Agricultural fertilizer 0.22 5.4
Turf fertilizer 0.12 2.9
Atmospheric deposition 0.11 2.7
Feed for farm animals 0.04 1.0
Total input 4.07 100.2

Outputs
Wastewater effluent 1.14 79.7
Stream export 0.11 7.7
Animal products 0.12 8.4
Diverted food waste (to farms) 0.03 2.1
Landscape compost 0.02 1.4
Total output 1.43 99.3

Storage
Sewage sludge 1.46 55.3
Landfill food waste 0.25 9.5
Septic system storage 0.23 8.7
Landfill landscape waste 0.05 1.9
Ecosystem storage (mostly soils) 0.66 25.0
Total storage 2.64 100.4
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Pet food was the third major P input, accounting for 14% of total
P inputs to the region, more than twice as much as turf fertilization
and atmospheric deposition combined. Finally, inputs to agricul-
ture within the urban region, including fertilizer and animal feed,
was 0.26 Gg P yr�1, about 6% of total P input to the region. Agricul-
tural P fluxes were small: agricultural fertilizer and imported feed
for farm animals together accounted for only 6% of total P input to
the TCW.
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4.1.2. P exports
Table 2 shows that 1.43 Gg P yr�1, about 36% of input P is ex-

ported from the urban system. P exported as wastewater effluent
plus stream flow to the Mississippi River together account for
31% of total P input. This P export would be considered ‘‘leakage’’
that has no useful purpose.

Small amounts of P are exported as useful products. These
‘‘deliberate exports’’ include landscape wastes, animal products,
and some waste food that is diverted from the solid waste stream
to become animal food, either directly or through processing.
Deliberate export account for only 0.17 Gg P yr�1, about 4% of P
input.
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4.1.3. Storage
Sixty-four percent of P entering urban region is stored, either

within the urban system or in landfills outside the urban bound-
aries that receive urban waste. Sewage sludge is the largest flux,
accounting for 36% of all P entering the urban system. Most of
the rest of stored P enters landfills (0.25 Gg yr�1 as food waste
and 0.05 Gg yr�1 as landscape waste). Ecosystem storage (ES),
computed by difference (ES = input – export – accounted storage)
was 0.66 Gg yr�1, about 14% of input P.
340

341

342

343
4.1.4. P balance summary
In summary, the current P balance for the TCW is highly ineffi-

cient. Most P entering the system is either leaked to the Mississippi
River (31%) or stored in landfills or septic systems (49% of input).
Another 15% is stored in soils and plants, and only 4% is deliber-
ately exported as useful products.
Please cite this article in press as: Baker, L.A. Can urban P conservation he
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4.2. P conservation strategies

Four P conservation strategies were developed: (I) reduced P in-
put; (II) reuse of stored P, (III) reduced leakage; and (IV) a compre-
hensive strategy, combining I–III (Table 3). Reductions are focused
on major flux terms (generally > 10% of input), and were chosen to
be realistic based on current technology and lifestyles.

4.2.1. Scenario I: reduced P inputs
For this scenario, consumed human food input was reduced to

correspond to the US diet in 1977–1978, based on data from the
Continuing Survey of Foods (USDA, 1978). This reduced consumed
food P by 12%. Imported food waste was reduced by the same per-
centage. P in automatic dishwashing detergent was eliminated, an
act that has taken place in reality in the form of a 2010 law. Dog
food was reduced by 50%; this could be accomplished over time
by selecting smaller breeds of dogs. Finally, lawn P fertilizer is re-
duced to 0 (to comply with the current Minnesota law). This sce-
nario reduced P inputs to the TC watershed by 15% and slightly
decreased storage and leakage (Table 3).

4.2.2. Scenario II. Reuse of stored P
This scenario diverted all food waste entering landfills to a delib-

erate export. This diversion could be done by through a combination
of the following: composting municipal food waste, then exporting
the compost; shipping it directly to farms for animal food; process-
ing it to form animal feed; and diverting ash from food waste that
was combusted in a solid waste incinerator located in downtown
Minneapolis. All of these processes, except the last, are currently
being done for parts of the food waste stream. In this scenario all
ash from sewage sludge and from solid waste incineration was also
exported from the TCW, to be applied to agricultural land. Finally,
lawn waste now entering landfills was diverted to deliberate export.
These measures reduced storage within the urban system by 66%
and increased deliberate export by a factor of 11 (Table 3).

4.2.3. Scenario III. Reduce leakage
In this scenario, P removal efficiency for all wastewater treat-

ment plants in the region was increased from 56% (measured in
2000) to 90% (currently being achieved at the largest treatment
plant, but not at the smaller plants). No change was made in
stream P leakage, because there appears to be no empirical evi-
dence of success in achieving large reductions in P loading in urban
streams as the result of deliberate management, other than
through changes in land use. Upgrading wastewater treatment re-
duced leakage by 75%.

4.2.4. Scenario IV. Comprehensive P conservation scenario
In this scenario, the three previous scenarios were combined.

5. Discussion

5.1. Realism of P conservation scenarios I–IV

P conservation requires three broad elements: reduced P inputs,
reduced storage, with a shift toward deliberate export of P for
lp to prevent the brown devolution? Chemosphere (2011), doi:10.1016/
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useful purposes, and reduced leakage, mainly through improved
sewage treatment.

The comprehensive conservation scenario (IV in Table 3) devel-
oped here was intended to be reasonable and practical. All types of
reuse envisioned here are being employed for at least part of the
waste stream; the conservation scenario merely increases the frac-
tion of the waste stream that becomes deliberate export for prac-
tical uses. On the input side, the conservation diet is merely one
that Americans actually ate 30 years ago, prior to the obesity epi-
demic that has grown since that time. With regard to reducing
lawn fertilizer P inputs, Minnesota has enacted a law prohibiting
use of lawn P fertilizers (with some exceptions). In Minnesota, at
least, the law has been readily accepted, though apparently not
universally obeyed (MDA, 2007). Similarly, Minnesota, along with
16 other states, has passed laws to reduce the P in automatic dish-
washer detergents (USAToday, 2010). Finally, the conservation sce-
nario included reduction in size of dogs. This probably could not be
accomplished by regulation, but possibly through an education
campaign. Citizens might be motivated to reduce pet wastes be-
cause many local watersheds drain directly to highly valued local
lakes. Fissore et al. (2010) found that with Minnesota’s lawn P fer-
tilizer law in effect, pet excretion is now the main source of P to the
landscapes of owner-occupied houses.

More drastic conservation measures could be envisioned. In
particular, adoption of a vegetation diet would reduce P use in up-
stream agricultural systems, by reducing P losses associated with
conversion of animal feed to animal products (Cordell et al.,
2009). However, only 3% of Americans report that they are vegetar-
ians, and only 0.3% report being vegan (Vegetarian, 2008). Further-
more, most vegetarians consume animal products, such as fish,
milk, cheese, and eggs, all of which involve conversion of plant P
to animal P, with associated inefficiencies. More realistic P conser-
vation scenarios would involve modest changes in diet, such as
reduction in animal products among those consuming traditional
diets.
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5.2. Effect of P conservation scenario on the TCW’s P balance

Adoption of a comprehensive P conservation scenario (Table 3)
would increase the percentage of input P that is reused from 4% to
68%, while reducing leakage from 31% of input to 9%. Of particular
importance is the increase in deliberate export of P, from
0.18 Gg yr�1 in the baseline scenario to 2.34 Gg yr�1 in the compre-
hensive conservation scenario. After subtracting 0.12 Gg yr�1 that
is exported from the urban system as animal products in both sce-
narios, the amount of deliberate P export that is could be recycled
to agricultural systems is 0.06 Gg yr�1 (baseline) and 2.22 Gg yr�1

(comprehensive conservation scenario)(Table 4, line 2). The impact
of reused urban P in the context of agricultural P inputs can be
coarsely estimated from the national P flow analysis of (Suh and
Lee, this issue). Their analysis shows that 1892 Gg P yr�1 are added
to US crops that are converted to food, which produce food con-
taining 745 Gg P yr�1, a ratio of fertilizer: food of 2.5. Dividing
the value for P available to agriculture (Table 4, line 2) by 2.5 yields
the amount of food that could be supported by reused P (Table 4,
line 3). Finally, line 4 shows the percent of the urban food supply
that could be supported by reused P.
Table 4
Effect of adopting the P conservation scenario on the TCW’s P balance.

Baseline Conservation

1. Food P 2.26 1.88
2. Reused P available for export to agriculture 0.06 2.22
3. Food P supported by reused urban P 0.03 0.89
4. % of urban food supported by reused urban P 1.3 47

Please cite this article in press as: Baker, L.A. Can urban P conservation hel
j.chemosphere.2011.03.026
This analysis shows that reused P in the comprehensive P con-
servation scenario could support 47% of the food supply for the
TCW system, compared with only 1% in the baseline scenario.
The conclusion of this analysis is that reusing urban P for agricul-
tural production could be an important strategy for sustaining ur-
ban food supply in the face of dwindling phosphate rock resources.

One practical limitation to operationalizing a P conservation
scenario is the cost of transporting reused P to agricultural lands.
Most forms of reused P (e.g., food wastes, compost) have fairly
low P content, hence are much heavier to transport that high-P fer-
tilizers. A P conservation scenario would likely be feasible only for
nearby agriculture. Thus, one consequence of our response to
exhaustion of mined phosphate rock will likely be more peri-urban
agriculture.

P conservation would have several ancillary benefits. One of the
most important would be decreased leakage of P to aquatic ecosys-
tems, which could reverse eutrophication of lakes and estuaries in
or near cities. A second would be a reduction of landfill volumes,
decreasing the amount of land needed for landfills in the future
and the cost of transporting solid waste to ever-increasing dis-
tances from cities. A third would be facilitation of local agriculture,
through provision of reused P.
5.3. Research needs

Given the growing importance of P conservation in the future,
more research is needed to develop P conservation strategies.
Although all of the conservation measures included in this study
have been implemented on at least a small scale, the economic,
ecological, and social implications of reengineering the P cycle of
urban regions on a comprehensive scale needs to be studied. Be-
cause the sustainability implications of P conservation are likely
site-specific, the ideal study would include a number of cities that
span a range of conditions. Of particular importance is a better
understanding of the fate of food wastes throughout the crop-to-
food system, and a better understanding of how nuanced diet
choices and particular food production systems influence P fluxes
between cities and agricultural systems. Although urban residents
are not likely to make profound changes in diet (like becoming ve-
gan), they do make modest changes, often with some government
persuasion. For example, from 1970 to 1974 to 1995, American cit-
izens reduced consumption of red meat by 12%, while increasing
chicken consumption by 89%; and switched from whole milk
(63% reduction) to 1% milk (423% increase)(Harnack et al., 2000).
These types of modest diet changes can make a very significant dif-
ference in nutrient requirements for agricultural systems supply-
ing cities (Baker and Brezonik, 2007; Suh and Lee, in review for
this issue) and hence need to be understood, especially in the con-
text of the closer physical linkage between agricultural systems
and urban systems that is likely to evolve to conserve P.
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6. Conclusion

As we start to mobilize for the task of conserving P to slow the
exhaustion rate of global phosphate rock, urban P balances can be
used to shape conservation strategies. P conservation would gener-
ally include three elements: reducing inputs, reducing leakage, and
reusing P wastes. For the TCW, a comprehensive, practical P con-
servation strategy reduced P inputs by 15%, reduced leakage to
aquatic systems by 74%, and reduced storage by 70%, while
increasing deliberate export by 1200%. P exported from the TCW
to farmland would be sufficient to support nearly half of the food
supply for TCW. Implementing P conservation on a large scale will
require considerable research. Research to understand P conserva-
tion at the national level should be started very soon so that we can
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acquire knowledge regarding sustainable P conservation that could
be implemented before the situation becomes a crisis.
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